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DNA forms the basis of all life processeand has received 7 - 20
significant attention in many areas of sciedc& While intense T 164
research has focused on characterizing DNA at interfaces for the 641 5,
purpose of biodiagnostics, many of these studies require the ' 2 12 1
synthesis of oligonucleotides labeled with fluorescéitelectro- T 57 o 8-
chemicalt?13 radioactive!*1> or nanoparticlé!® tags to afford ©, o 1
detection. Label-free techniques for DNA detection, such as surface % 4 & 4_.
plasmon resonance spectroscépifatomic force microscopyf2° = 0-
X-ray spectroscopie®;?? and Fourier transform infrared (FTIR) “wj 3 0001 001 04
spectroscop¥§?23eliminate the synthetic steps necessary for labeling I 5 Ln ([Salt] [M])
oligonucleotides but often require surfaces with high dielectric B 27
constants. 14
Here, we are taking the first step toward circumventing these
issues by applying nonlinear optical methods to study DNA single 0
strands that are chemically attached to fused quartz/water interfaces. ! ! ! ! ! !
This work has important implications for predicting and controlling 6o 02 04 06 08 10
macromolecular interactions, improving biodiagnostics, and un- Salt Concentration [M]
derstanding life processes. Specifically, we use second harmonicrigyre 1. SHG E-field (p-in/p-out) versus salt concentration at pH 7 and
generation (SHG) to obtairwithout the use of labetsthe full room temperature for'sSAAA AAA AAA AAA TTT-3 ' oligonucleotides

thermodynamic state information for surface-bound DNA as a anchored to a fused quartz/water interface after subtracting theESti®i

contribution from the succinimide linker. The SHEfield depends linearly
function of the ionic sirength in the surrounding aqueous solution. on the static electric field generated by the interfacial potentiglyvia the

The nc_)nlinear optical response, tha_t is, the_ SHSield, i_S third-order nonlinear susceptibility(®. The interfacial potential is calculated
proportional to the electrostatic potential at the interfdéé This using the Gouy-Chapman model (solid black lir)2” and results in the
method, pioneered by Eisenthal and co-workers’ is called the SHG E-field decay with increasing salt concentration. Inset: SEteld

“»® technique” and is applied here to track the interfacial potential for the DNA (circles) and for the succinimide linker (squares) as a function
set up by the phosphate charges along the backbone of theOf salt concentration.
oligonucleotides. These phosphate groups thus act as intrinsic labels

) . e optical parametric amplifiet® second harmonic generation (SHG)
which do not require any DNA modification (Scheme 1).

signals from the functionalized aqueous/solid interface were
obtained at 325 nm near total internal reflection, off two-photon

Scheme 1. Succinimide Siloxane Linker and Oligonucleotide
resonance, and at room temperature.

Attachment via Amide Bond Formation (left). Negative Charges on

model2%30which results in an interfacial charge density of 2.3(1)
uClen? for our single-stranded oligonucleotide. If all 14 negative
charges along the backbone are sampled byytHeexperiment,

Our experiments were carried out on fused quartz lenses this charge density would correspond to a surface coverage of
functionalized with a succinimide-terminated silane that was then around 1x 10 strands/crh This agrees well with other measured
reacted with a 3amine-terminated’SAAA AAA AAA AAATTT- oligonucleotide surface coverages on gold and silica that range
3' oligonucleotide strand. The functionalized surface was placed between 1x 10 and 2 x 10 strands/cri31~33 Between 3 mM
under milipore water maintained at pH 7 using HCl and NaOH, and 1 M salt concentration, the interfacial potential decreases from
and the ionic strength was adjusted using NaCl. Using a 120 fs 170 to 30 mV in absolute value (Figure 2), which is in good

the Phosphate Groups Lining the DNA Backbone (right) Act as an In our typical y® experiment, the negative charges of the
Intrinsic Label in the Nonlinear Optical Measurements oligonucleotide strand are screened out by increasing the salt
' concentration. This, in turn, lowers the electrostatic potential at the
: e interface. One would thus expect a lower SiH@ield as the salt
Ve f‘ concentration is increased. In contrast, the SHG response from the
: . . uncharged linker should remain constant until a much higher salt
& : @ b K j concentration is reached, at which point processes other than simple
o%o : 0 ﬁ\)\ charge screening may come into play.
0 0 &'ﬁfé , @-0 This is indeed what is observed in our experiment (Figure 1).
o —uace SI-.O S|._0 ' —pl The SHG Efield can be described by the GouZhapman
]
1)
)

SiCly /-1—‘0 ]7 /-1_b 17
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Figure 2. Interfacial potential (top line) and interfacial energy density

(bottom line) for the DNA single strand as a function of salt concentration
calculated from the GouyChapman model and the Lippmann equation.
Inset: SHGE-field for the DNA single strand as a function of salt
concentration for the polarization combination p-id5-out (filled circles),
p-in/+45-out (empty circles), and the ratio of (p-id5-out)/(p-in/
+45-out) (filled squares).

agreement with theoretical predictions by Pettitt and co-wor¥ers.
Likewise, the change in the interfacial energy density, which is
calculated from the interfacial charge density and the interfacial
potential through the Lippmann equati$frgecreases from 375 to
75 nJ/cm over the same salt concentration range.

Over the range of salt concentrations investigated in our work,

polarization-resolved measurements show an approximately 150% (1g)

stronger SHG response polarized-at5° away from the plane of
incidence as compared t045° (Figure 2 inset) when probing the
DNA-functionalized interface with p-polarized light. Within ex-

perimental noise, the ratio of these two SHG measurements appears
to be independent of salt concentration. This is consistent with SHG

optical rotatory dispersion (SHEORD) angles  —20°) that
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